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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-326

LARGE-SCALE WIND-TUNNEL TESTS OF A WINGLESS VERTICAL
TAKE-OFF AND LANDING AIRCRAFT -
PRELIMINARY RESULTS

By David G. Koenig and James A. Brady
SUMMARY

Large-scale wind-tunnel tests were made of a wingless vertical
take-off and landing aircraft at zero sideslip to determine performance
and longitudinal stability and control characteristics at airspeeds from
O to 70 knots. Roll control and rudder effectiveness were also obtained.
Limitations in the propulsion system restricted the 1lift for which level
flight could be simulated to approximately 1500 pounds.

Test variables with roll control and rudder undeflected were
airspeed, vane setting, angle of attack, elevator deflection, and power.
In most of the tests angle of attack, elevator, and power were varied
individually while the other four parameters were held constant at
previously determined values required for simulating trimmed level flight.
The majority of the tests were made with power on and tail on at air-
speeds between 20 and 7O knots. However, a limited number of data were
obtained for the following conditions: (1) at zero velocity, horizontal
tail on, power on, (2) at forward velocity, tail off and power on, (3) at
forward velocity, tail on, but with power off.

INTRODUCTION

There has been research and development work on several types of
aircraft with vertical take-off and landing capabilities. One type is a
wingless alircraft configuration. A description of the development and
construction of a large-scale test bed of such a configuration is pre-
sented in reference l. The aircraft attains a major portion of its
vertical 1ift in hovering and forward flight by diverting downward most
of the air drawn through a duct by counterrotating ducted propellers;
downward deflection is obtained by means of a series of duct exit vanes.
One set of vanes located at the duct exit is adjustable so that as forward
flight speed is increased, the deflection of the duct air flow can be
reduced. The other vanes are not adjustable and are placed in such a
manner that they deflect the air downward, approximately 30° from the
forward duct center line, before it flows through the adjustable vanes.



An elevator and a rudder serve both as conventional control surfaces at

forward speed, and as a means of deflecting the air which is ducted back
to the tail from the main duct for longitudinal and directional control

in hovering or very low-speed flight.

Large~scale wind-tunnel tests of this test bed have been undertaken
in order to explore the performance, stability, and control character-
istics during transition from hovering to forward flight. Tests were
limited to an airspeed range of from O to 70 knofts by both a lower limit
in duct air-flow deflection angle (with respect 4o the main duct center
line) of approximately 30° and limits in the powsr absorption character-
istics of the fixed-piteh propellers used for ths tests.

Results of the tests are presented herein without discussion in
order to expedite publication.

NOTATTION
1ift
C
L aS
drag
C
D as
rolling moment . . .
Cy 25d , with reference to axis parallel with free stream
yawing moment
Cn
gsSd
C side force
Y as
pitching moment
Cn
gsSd
d mean internal duct diameter, ft

P total engine chart power, hp

q free-stream dynamic pressure, averaged for a particular control or
power sweep, 1b/sq ft

S reference area, <§> d%, sq ft
V, nominal airspeed, k

a angle of attack of the aircraft reference plane (see fig. 2(b)) with
respect to wind-tunnel walls, deg
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g roll control deflection, deg
8o elevator deflection, deg
8y rudder deflection, deg

] angle between the lower surface of the cascaded vanes and the air-
craft reference plane, deg (see fig. 2(d))

OF angle between the lower surface of the single forward vane and the
aircraft reference plane, deg (see fig. 2(d))

ATRCRAFT AND TEST EQUIPMENT

A photograph of the test bed mounted in the 40O- by 80-Foot Wind
Tunnel is presented in figure 1. A three-quarter rear view of the air-
craft is shown in figure 2(a), and a sketch with pertinent dimensions is
shown in figure 2(b). Other geometrical data are listed in table I.
Contours of the inner and outer surfaces are shown in figure 2(c). Details
of the turning vane system and roll control are presented in figure 2(d).
Pertinent details of the tail are presented in figure 2(e), and coordi-
nates of the airfoil section of the tail are presented in table IT.

Blade angles, chord, and thickness ratio of the propeller are shown in
figure 2(f).

The internal flow system of the test bed may be described in the
following manner. Ninety percent of the total mass flow passes through
the system of vanes to provide 1ift; the remaining 10 percent of the mass
flow is directed over the mid 27-percent span of the elevator and the
lower 28 percent of the rudder. The turning vanes are a system of both
fixed (vanes B, C, and F in fig. 2(d)) and adjustable vanes. The adjust-
able vanes consist of a set of 5 mechanically linked cascade vanes
(vanes D and E in fig. 2(d)) of deflection 6, as well as a single adjust-
able vane (vane A, fig. 2(d)) with deflection, 6. The single adjustable
vane was set at Oy = 66° for airspeeds up to 40 knots and 31° for air-
speeds between 40 and TO knots. The cascade vane deflections were limited
to values of 6 between 33° and 70°. The single upper fixed vane (vane F)
shown in figure 2(d) was used only for part of the testing done at O,

20, and 30 knots. Roll contrcl was obtained by deflecting the hinged
surface located on the ventral fin.

The two fixed-pitch propellers rotated in opposite directions and
each one was driven by a 265 horsepower reciprocating engine. The
propeller was designed (see fig. 2(f)) so that only part of the total
engine power available could be sbsorbed during the tests without exceeding
the maximum engine speed specified for the engines.



The aircraft was mounted on a metal frame which was, in turn, mounted
on the conventional strut system. Strain-gage load cells were placed
between the frame and the struts at the three attachment points to measure
the longitudinal aerodynamic forces.

TESTS AND PROCEDURE

The procedure for testing with power and horizontal tail on and
with rudder and roll control undeflected was as follows for most of the
vane setting and airspeed combinations considered. Values of angle of
attack, elevator deflection, and power settings required to trim the
alrecraft at 1500 pounds 1lift and zero drag were determined approximately
by trial and error. Data were then obtained while these three parameters
were varied individually with the other two held constant at approximately
their initial values.

In addition to the aforementioned tests, a limited number of tests
with roll control and rudder undeflected, for which results are presented
herein, were made under the following conditions:

1. With zero veloeity at 20° angle of attack and varying power or
elevator deflection.

2. With forward velocity, power on, but horizontal tail off.
3. With forward velocity, power off, horizontal tail on.

Tests with either varying roll control deflection or rudder deflection
were made at one combination of 6 and 6y per airspeed for alrspeeds
from 20 to 70 knots. Values of angle of attack, elevator setting, and
power were those required to simulate approxinately trimmed level flight
(1500 1b 1ift).

The value of 1500 pounds used as trimmed 1ift was arbitrarily chosen
as the maximum which could be obtained for the complete test airspeed
range and was controlled essentially by the cepacity of the propulsion
system.

DATA REDUCTION

The values of Cy, Cp, and C; presented herein were computed from
the outputs of strain-gaged load cells locatec at the three attachment
points between the alrcraft and the steel frame.

The values of Cy, C,, and C; were derived from wind-tunnel
mechanical scale system readings, and include forces exerted on the
support strut tips and supporting frame as well as on the aircraft.
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No corrections for wind-tunnel-wall effects or possible influences
of the support frame on the measured aerodynamic characteristics have
been considered.

Least Count Errors

The following are the estimated errors of measurement of both the
test variables and measured values of forces and moments as based on the
least count of the respective read-out systems:

o +0.2° Yawing moment +70 ft-1b
Lift 110 1b Rolling moment +160 ft-1b
Drag #10 1b q +0.02 1b/sq ft
Pitching moment #80 ft-1b | 8e, 84, Sy, and 6  *1/4°

Side force th 1v P 5 hp

Power Measurement

Values of power listed herein were obtained from the manufacturer's
engine performance charts. Since the engines in the test bed had been
used considerably prior to the subject installation, the use of chart
power may be only an approximation of actual engine output. However, the
method of measuring power was found sufficiently reliable to enable the
repetition of test conditions satisfactorily.

Scatter in Data

Extreme flexibility in the test-bed structure seemed to be the
principal source of scatter in the data for a given set of test conditions.
The situation seemed to be augmented for the tests at O and 20 knots by
the random flow recirculation within the wind-tunnel test section.

RESULTS
Presentation of Force and Moment Data
Values of Cr, Cp, and Cp for the aircraft with various combinations

of vane configuration and airspeed as obtained with angle of attack
varying are presented in figures 3(a) through (f). It should again be



mentioned that only two settlngs of vane A (fig. 2(d)), Oy, were
considered in the test: 66° for airspeed from O to 40 knots, and 31°
for airspeed from 40 to 7O knots.

Values of Cr,, Cp, and C for the aircraf: as functions of power
for various combinations of vane settings and ailrspeed are presented in
tigures 4(a) through (f). The vane settings and airspeed are similar to
those used in obtaining the data of figure 3.

Values of (i, Cp, and Cp obtained with the elevator deflection
varying at each of the airspeeds considered in the present tests are
presented in figures 5(a) and (b). Data for only one vane configuration
per airspeed are presented since it was found that elevator effectiveness
was almost independent of vane configuration for the combinations of vane
configuration and speed considered.

Results of less extensive portions of the *testing are presented in
the figures listed as follows. Figure 6 shows data obtained while varying
angle of attack with the horizontal tail off. Data from variable angle-
of-attack tests with power off are presented in figure 7. TForce and
moment data from tests at zero velocity are presented in figure 8 for the
aircraft at 20° angle of attack with both power and elevator deflection
as variables. Values of Cy, Cn, and C; are presented in figure 9 for
tests in which either roll control or rudder dellection were varying.

Characteristics in Trimmed Level Flight

For most of the combinations of vane confizuration and airspeed for
which data have been presented, trimmed level flight for 1500 pounds of
1ift was only approximately simulated. In order to estimate control and
power adjustments from the test values which woild be required to more
nearly simulate trimmed level flight conditions (L= 1500 1b, Cp and Cm==0)
the following equations were solved:

OLQAG‘+ CL8 Ade + CL AP= AVL

CDCLAG,-F CDE) eAﬁe + CDPAP =A D
O A0+ Cry ABo+ CpAP=AZy
e

where Aa, Ade, and AP are the adjustments in «, 8e, and P required

to simulate more nearly level flight conditions by changing test values

of Cy, Cp, and Cp by the amounts ACy, ACp, and ACy; CLQ’ CL6 3 CLP,
e

CDg, . . are slopes of the experimental curves obtained from the data
of flgures 3 through 5 for approximately level-flight conditions.

O
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The resulting values of a, By, and P are presented in figure 10
as a function of vane angle, 6. Two transitions defined as given
variations of vane angle with airspeed are described in figure 1ll. Cor-
responding variations of angle of attack, elevator deflection, power,
and stability, de/dCL, are indicated in the figure.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., April 22, 1960
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l. Anon.: Final Report on Research on Wingless Aireraft. Collins
Aeronautical Research Laboratories, July 1, 1959.



TABLE I.- GEOMETRIC DATA

Duct area (including nacelle), sq ft =« « o « o o «

Duct area (excluding nacelle), sG £ o o o o o o o o o
Diarneter ) ft . L ] L] L ] L ] - » - * - L L] * L ] [ ] » L ] L ] * L 4 L ] -
Exhaust area (in plane 30° from horizontal plane), sq

Over-all width, £t ¢ ¢ ¢ o ¢ ¢ ¢ ¢ o o o o o o o &
Moment center (location from duect leading edge), ft
Horizontal tail
Span, f£ o o ¢ ¢ o 4 s o o o o o o o s e e s o
Area (extended to plane of symmetry), sq £t . . .
Aspect T8Li0 ¢ o ¢ o o o ¢ o ¢ o o o o e s o e
Taper ratio « ¢ o o ¢ o o ¢ o ¢ o s o s o o o o «
Incidence of lower surface, deg o« o o o o o o » o
Elevator area, sq £t o o ¢ o o o o o ¢ o o o o &
Elevator hingeline to moment center « o+ « « « « &
Rudder area, sqQ £ o o o o o o o o o o o o o o o =
Roll-control area, sqQ f£ « ¢ « o o o ¢ ¢ o o o o
Engines, (two) Lycoming OU35-1T7, ND v « o o o « o »
Propeller diameter, £ + ¢ ¢ o o o o s o ¢ o o o &

hig7

.

L4y, 18
37.12
Te5
58
9.17
10.83

18.58
100.6
3.43
0.438
0

59.5
26.83
27
11.55
265
7.35

TABLE II.- COORDINATES OF ATRFOIL SECTIO OF HORIZONTAL TAIL

[Section is Parallel With Aircraft Pline of Symmetry]

Percent chord
Ordinates
Station | Upper Lower
surface | surfa:ze
0 3.54 3.5+
1.25 5456 1.93
2D 6453 l.3[
5.0 .92 .7
Te5 8.89 «3)
10 9.68 .21
15 10.72 .04
20 11.35 0
25 11.73
30 11.96
Lo 11.83
50 11.04
60 9.69
70 .87
80 5.54
90 2.88
100 .12 Y
L.E.R., 146; center at
station 146 and 3.60
above the lower surface.

o
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Figure 1.~ Aircraft as mounted in Ames 4LO- by 80-Foot Wind Tunnel.
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Figure 9.- Concludec..
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Figure 10.- Control and power settings required for trim at L=1500 1b.
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